

Contents

	Overview
	How Can I Help?

	Should I Use This?

	Installation

	Documentation

	Development

	Installation

	Usage

	Reference
	structured_data.adt

	structured_data.data

	structured_data.match

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	Unreleased

	0.13.0 (2019-09-29)

	0.12.1 (2019-09-04)

	0.12.0 (2019-09-03)

	0.11.1 (2019-03-23)

	0.11.0 (2019-03-23)

	0.10.1 (2019-03-22)

	0.10.0 (2019-03-21)

	0.9.0 (2019-03-20)

	0.8.0 (2019-03-19)

	0.7.0 (2019-03-19)

	0.6.1 (2019-03-18)

	0.6.0 (2018-07-27)

	0.5.0 (2018-07-22)

	0.4.0 (2018-07-21)

	0.3.0 (2018-07-15)

	0.2.1 (2018-07-13)

	0.2.0 (2018-07-13)

	0.1.0 (2018-06-10)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/python-structured-data]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/mwchase/python-structured-data] [image: AppVeyor Build Status] [https://ci.appveyor.com/project/mwchase/python-structured-data] [image: Requirements Status] [https://requires.io/github/mwchase/python-structured-data/requirements/?branch=master]

[image: Coverage Status] [https://codecov.io/github/mwchase/python-structured-data]

[image: codacy] [https://www.codacy.com/app/max-chase/python-structured-data?utm_source=github.com&utm_medium=referral&utm_content=mwchase/python-structured-data&utm_campaign=Badge_Grade] [image: Codebeat Code Quality Status] [https://codebeat.co/projects/github-com-mwchase-python-structured-data-master] [image: Code Climate Maintainability Score] [https://codeclimate.com/github/mwchase/python-structured-data/maintainability] [image: Scrutinizer Code Quality Status] [https://scrutinizer-ci.com/g/mwchase/python-structured-data/?branch=master]

	package

	
[image: PyPI Package latest release] [https://pypi.python.org/pypi/structured-data] [image: PyPI Wheel] [https://pypi.python.org/pypi/structured-data] [image: Supported versions] [https://pypi.python.org/pypi/structured-data] [image: Supported implementations] [https://pypi.python.org/pypi/structured-data]

[image: Commits since latest release] [https://github.com/mwchase/python-structured-data/compare/v0.13.0...master]

Code generators for immutable structured data, including algebraic data types, and functions to destructure them.
Structured Data provides three public modules: structured_data.adt, structured_data.match, and structured_data.data.

The adt module provides base classes and an annotation type for converting a class into algebraic data types.

The match module provides a Pattern class that can be used to build match structures, and a Matchable class that wraps a value, and attempts to apply match structures to it.
If the match succeeds, the bindings can be extracted and used.
It includes some special support for adt subclasses.

The match architecture allows you tell pull values out of a nested structure:

structure = (match.pat.a, match.pat.b[match.pat.c, match.pat.d], 5)
my_value = (('abc', 'xyz'), ('def', 'ghi'), 5)
matchable = match.Matchable(my_value)
if matchable(structure):
 # The format of the matches is not final.
 print(matchable['a']) # ('abc', 'xyz')
 print(matchable['b']) # ('def', 'ghi')
 print(matchable['c']) # 'def'
 print(matchable['d']) # 'ghi'

The subscript operator allows binding both the outside and the inside of a structure.
Indexing a Matchable is forwarded to a matches attribute, which is None if the last match was not successful, and otherwise contains an instance of a custom mapping type, which allows building the matched values back up into simple structures.

The Sum base class exists to create classes that do not necessarily have a single fixed format, but do have a fixed set of possible formats.
This lowers the maintenance burden of writing functions that operate on values of a Sum class, because the full list of cases to handle is directly in the class definition.

Here are implementations of common algebraic data types in other languages:

class Maybe(adt.Sum, typing.Generic[T]):

 Just: adt.Ctor[T]
 Nothing: adt.Ctor

class Either(adt.Sum, typing.Generic[E, R]):

 Left: adt.Ctor[E]
 Right: adt.Ctor[R]

The data module provides classes based on these examples.

	Free software: MIT license

How Can I Help?

Currently, this project has somewhat high quality metrics, though some of them have been higher.
I am highly skeptical of this, because I’ve repeatedly given in to the temptation to code to the metrics.
I can’t trust the metrics, and I know the code well enough that I can’t trust my own judgment to figure out which bits need to be improved and how.
I need someone to review the code and identify problem spots based on what doesn’t make sense to them.
The issues are open.

Should I Use This?

Until there’s a major version out, probably not.

There are several alternatives in the standard library that may be better suited to particular use-cases:

	The namedtuple factory creates tuple classes with a single structure; the typing.NamedTuple class offers the ability to include type information. The interface is slightly awkward, and the values expose their tuple-nature easily. (NOTE: In Python 3.8, the fast access to namedtuple members means that they bypass user-defined __getitem__ methods, thereby allowing factory consumers to customize indexing without breaking attribute access. It looks like it does still rely on iteration behavior for various convenience methods.)

	The enum module provides base classes to create finite enumerations. Unlike NamedTuple, the ability to convert values into an underlying type must be opted into in the class definition.

	The dataclasses module provides a class decorator that converts a class into one with a single structure, similar to a namedtuple, but with more customization: instances are mutable by default, and it’s possible to generate implementations of common protocols.

	The Structured Data adt decorator is inspired by the design of dataclasses. (A previous attempt used metaclasses inspired by the enum module, and was a nightmare.) Unlike enum, it doesn’t require all instances to be defined up front; instead each class defines constructors using a sequence of types, which ultimately determines the number of arguments the constructor takes. Unlike namedtuple and dataclasses, it allows instances to have multiple shapes with their own type signatures. Unlike using regular classes, the set of shapes is specified up front.

	If you want multiple shapes, and don’t want to specify them ahead of time, your best bet is probably a normal tree of classes, where the leaf classes are dataclasses.

Installation

pip install structured-data

Documentation

https://python-structured-data.readthedocs.io/

Development

To run the all tests run:

tox

Installation

At the command line:

pip install structured-data

Usage

To use Structured Data in a project:

import structured_data

Structured Data provides several related facilities.

	To define algebraic data types, see the structured_data.adt module.

	To perform destructuring matches of data, see the structured_data.match module.

Reference

	structured_data.adt

	structured_data.data

	structured_data.match

structured_data.adt

Base classes for defining abstract data types.

This module provides three public members, which are used together.

Given a structure, possibly a choice of different structures, that you’d like
to associate with a type:

	First, create a class, that subclasses the Sum class.

	Then, for each possible structure, add an attribute annotation to the class
with the desired name of the constructor, and a type of Ctor, with the
types within the constructor as arguments.

To look inside an ADT instance, use the functions from the
structured_data.match module.

Putting it together:

>>> from structured_data import match
>>> class Example(Sum):
... FirstConstructor: Ctor[int, str]
... SecondConstructor: Ctor[bytes]
... ThirdConstructor: Ctor
... def __iter__(self):
... matchable = match.Matchable(self)
... if matchable(Example.FirstConstructor(match.pat.count, match.pat.string)):
... count, string = matchable[match.pat.count, match.pat.string]
... for _ in range(count):
... yield string
... elif matchable(Example.SecondConstructor(match.pat.bytes)):
... bytes_ = matchable[match.pat.bytes]
... for byte in bytes_:
... yield chr(byte)
... elif matchable(Example.ThirdConstructor()):
... yield "Third"
... yield "Constructor"
>>> list(Example.FirstConstructor(5, "abc"))
['abc', 'abc', 'abc', 'abc', 'abc']
>>> list(Example.SecondConstructor(b"abc"))
['a', 'b', 'c']
>>> list(Example.ThirdConstructor())
['Third', 'Constructor']

	
class structured_data.adt.Ctor

	Marker class for adt constructors.

To use, index with a sequence of types, and annotate a variable in an
adt-decorated class with it.

	
class structured_data.adt.Product

	Base class of classes with typed fields.

Examines PEP 526 __annotations__ to determine fields.

If repr is true, a __repr__() method is added to the class.
If order is true, rich comparison dunder methods are added.

The Product class examines the class to find annotations.
Annotations with a value of “None” are discarded.
Fields may have default values, and can be set to inspect.empty to
indicate “no default”.

The subclass is subclassable. The implementation was designed with a focus
on flexibility over ideals of purity, and therefore provides various
optional facilities that conflict with, for example, Liskov
substitutability. For the purposes of matching, each class is considered
distinct.

	
class structured_data.adt.Sum

	Base class of classes with disjoint constructors.

Examines PEP 526 __annotations__ to determine subclasses.

If repr is true, a __repr__() method is added to the class.
If order is true, rich comparison dunder methods are added.

The Sum class examines the class to find Ctor annotations.
A Ctor annotation is the adt.Ctor class itself, or the result of indexing
the class, either with a single type hint, or a tuple of type hints.
All other annotations are ignored.

The subclass is not subclassable, but has subclasses at each of the
names that had Ctor annotations. Each subclass takes a fixed number of
arguments, corresponding to the type hints given to its annotation, if any.

structured_data.data

Example types showing simple usage of adt.Sum.

	
class structured_data.data.Either

	An ADT that wraps one type, or the other.

	
class Left

	Auto-generated subclass Left of ADT Either.

Takes 1 argument.

	
class Right

	Auto-generated subclass Right of ADT Either.

Takes 1 argument.

	
class structured_data.data.Maybe

	An ADT that wraps a value, or nothing.

	
class Just

	Auto-generated subclass Just of ADT Maybe.

Takes 1 argument.

	
class Nothing

	Auto-generated subclass Nothing of ADT Maybe.

Takes 0 arguments.

structured_data.match

Utilities for destructuring values using matchables and match targets.

Given a value to destructure, called value:

	Construct a matchable: matchable = Matchable(value)

	The matchable is initially falsy, but it will become truthy if it is passed a
match target that matches value:
assert matchable(some_pattern_that_matches) (Matchable returns itself
from the call, so you can put the calls in an if-elif block, and only make a
given call at most once.)

	When the matchable is truthy, it can be indexed to access bindings created by
the target.

	
class structured_data.match.AttrPattern

	A matcher that destructures an object using attribute access.

The AttrPattern constructor takes keyword arguments. Each name-value
pair is the name of an attribute, and a matcher to apply to that attribute.

Attributes are checked in the order they were passed.

	
destructure(value) → Union[Tuple[()], Tuple[Any, Any]]

	Return a tuple of sub-values to check.

If self is empty, return no values from self or the target.

Special-case matching against another AttrPattern as follows:
Confirm that the target isn’t smaller than self, then
Extract the first match from the target’s match_dict, and
Return the smaller value, and the first match’s value.
(This works as desired when value is self, but all other cases
where isinstance(value, AttrPattern) are unspecified.)

By default, it takes the first match from the match_dict, and
returns the original value, and the result of calling getattr with
the target and the match’s key.

	
match_dict

	Return the dict of matches to check.

	
class structured_data.match.Bind

	A wrapper that adds additional bindings to a successful match.

The Bind constructor takes a single required argument, and any number
of keyword arguments. The required argument is a matcher. When matching, if
the match succeeds, the Bind instance adds bindings corresponding to
its keyword arguments.

First, the matcher is checked, then the bindings are added in the order
they were passed.

	
bindings

	Return the bindings to add to the match.

	
destructure(value)

	Return a list of sub-values to check.

If value is self, return all of the bindings, and the structure.

Otherwise, return the corresponding bound values, followed by the
original value.

	
structure

	Return the structure to match against.

	
class structured_data.match.DictPattern

	A matcher that destructures a dictionary by key.

The DictPattern constructor takes a required argument, a dictionary
where the keys are keys to check, and the values are matchers to apply.
It also takes an optional keyword argument, “exhaustive”, which defaults to
False.
If “exhaustive” is True, then the match requires that the matched
dictionary has no keys not in the DictPattern. Otherwise, “extra” keys
are ignored.

Keys are checked in iteration order.

	
destructure(value) → Union[Tuple[()], Tuple[Any, Any]]

	Return a tuple of sub-values to check.

If self is exhaustive and the lengths don’t match, fail.

If self is empty, return no values from self or the target.

Special-case matching against another DictPattern as follows:
Confirm that the target isn’t smaller than self, then
Extract the first match from the target’s match_dict, and
Return the smaller value, and the first match’s value.
Note that the returned DictPattern is never exhaustive; the
exhaustiveness check is accomplished by asserting that the lengths
start out the same, and that every key in self is present in value.
(This works as desired when value is self, but all other cases
where isinstance(value, DictPattern) are unspecified.)

By default, it takes the first match from the match_dict, and
returns the original value, and the result of indexing the target with
the match’s key.

	
exhaustive

	Return whether the target must of the exact keys as self.

	
exhaustive_length_must_match(value: Sized)

	If the match is exhaustive and the lengths differ, fail.

	
match_dict

	Return the dict of matches to check.

	
class structured_data.match.MatchDict

	A MutableMapping that allows for retrieval into structures.

The actual keys in the mapping must be string values. Most of the mapping
methods will only operate on or yield string keys. The exception is
subscription: the “key” in subscription can be a structure made of tuples
and dicts. For example, md["a", "b"] == (md["a"], md["b"]), and
md[{1: "a"}] == {1: md["a"]}. The typical use of this will be to
extract many match values at once, as in a, b, c == md["a", "b", "c"].

The behavior of most of the pre-defined MutableMapping methods is currently
neither tested nor guaranteed.

	
class structured_data.match.Matchable(value: Any)

	Given a value, attempt to match against a target.

The truthiness of Matchable values varies on whether they have bindings
associated with them. They are truthy exactly when they have bindings.

Matchable values provide two basic forms of syntactic sugar.
m_able(target) is equivalent to m_able.match(target), and
m_able[k] will return m_able.matches[k] if the Matchable is
truthy, and raise a ValueError otherwise.

	
match(target) → structured_data._match.matchable.Matchable

	Match against target, generating a set of bindings.

	
class structured_data.match.Pattern

	A matcher that binds a value to a name.

A Pattern can be indexed with another matcher to produce an
AsPattern. When matched with a value, an AsPattern both binds the
value to the name, and uses the matcher to match the value, thereby
constraining it to have a particular shape, and possibly introducing
further bindings.

	
name

	Return the name of the matcher.

	
class structured_data.match.Property(func=None, fset=None, fdel=None, doc=None, *args, **kwargs)

	Decorator with value-based dispatch. Acts as a property.

	
delete_when(instance)

	Add a binding to the deleter.

	
deleter(deleter)

	Return a copy of self with the deleter replaced.

	
get_when(instance)

	Add a binding to the getter.

	
getter(getter)

	Return a copy of self with the getter replaced.

	
set_when(instance, value)

	Add a binding to the setter.

	
setter(setter)

	Return a copy of self with the setter replaced.

	
structured_data.match.decorate_in_order(*args)

	Apply decorators in the order they’re passed to the function.

	
structured_data.match.function(_func=None, *, positional_until=0)

	Convert a function to dispatch by value.

The original function is not called when the dispatch function is invoked.

	
structured_data.match.names(target) → List[str]

	Return every name bound by a target.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/mwchase/python-structured-data/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

Structured Data could always use more documentation, whether as part of the
official Structured Data docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/mwchase/python-structured-data/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up python-structured-data for local development:

	Fork python-structured-data [https://github.com/mwchase/python-structured-data]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/python-structured-data.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/mwchase/python-structured-data/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Max Woerner Chase - https://mwchase.neocities.org

Changelog

Unreleased

0.13.0 (2019-09-29)

Added

	match.function and match.Property decorators for Haskell-style function definitions.

Fixed

	Accessing data descriptors on Sum and Product instances.

0.12.1 (2019-09-04)

Added

	Product classes can make use of custom __new__.

0.12.0 (2019-09-03)

Added

	Product base class

Changed

	Improved documentation of some match constructors.

	Exposed MatchDict type, so it gets documented.

	Converted the adt decorator to a Sum base class.

Removed

	Guard type removed in favor of user-defined validation functions.

0.11.1 (2019-03-23)

Changed

	Restore proper behavior of __new__ overrides.

0.11.0 (2019-03-23)

Changed

	Consider all overrides of checked dunder methods, not just those in the decorated class.

0.10.1 (2019-03-22)

Added

	A non-ergonomic but simple wrapper class for use by the typing plugin. It’s not available to runtime code.

0.10.0 (2019-03-21)

Changed

	Actually, the facade was working, I was just confused. Restored the facade.

0.9.0 (2019-03-20)

Changed

	Removed the facade.

	Added stability guarantee to Ctor.

0.8.0 (2019-03-19)

Changed

	Rewrote the facade.

0.7.0 (2019-03-19)

Changed

	Tried to put up a facade for type analysis. It didn’t work.

0.6.1 (2019-03-18)

Added

	Bind class for attaching extra data to a match structure.

	PEP 561 support.

Changed

	As-patterns are now formed with indexing instead of the @ operator.

	AttrPattern and DictPattern now take keyword arguments instead of a dict argument, and form new versions of themselves with an alter method.

	Actually. Change DictPattern back, stop trying to keep these things in synch.

0.6.0 (2018-07-27)

Added

	AttrPattern and DictPattern classes that take a dict argument and perform destructuring match against arbitrary objects, and mappings, respectively.

Changed

	Added special handling for matching AsPatterns against different AsPatterns. This is subject to change, as it’s definitely an edge case.

0.5.0 (2018-07-22)

Added

	Matchable class is now callable and indexable. Calling is forwarded to the match method, and indexing forwards to the matches attribute, if it exists, and raises an error otherwise.

	Matchable class now has custom coercion to bool: False if the last match attempt failed, True otherwise.

Changed

	Renamed enum to adt to avoid confusion.

	Renamed ValueMatcher to Matchable.

	Matchable.match now returns the Matchable instance, which can then be coerced to bool, or indexed directly.

0.4.0 (2018-07-21)

Added

	Mapping class especially for match values. It’s capable of quickly and concisely pulling out groups of variables, but it also properly supports extracting just a single value.

	Mapping class can now index from a dict to a dict, in order to support **kwargs unpacking.

Fixed

	A bug (not present in any released version) that caused the empty tuple target to accept any tuple value. This is included partly because this was just such a weird bug.

Removed

	Unpublished the MatchFailure exception type, and the desugar function.

0.3.0 (2018-07-15)

Added

	Simpler way to create match bindings.

	Dependency on the astor library.

	First attempt at populating the annotations and signature of the generated constructors.

	data module containing some generic algebraic data types.

	Attempts at monad implementations for data classes.

Changed

	Broke the package into many smaller modules.

	Switched many attributes to use a WeakKeyDictionary instead.

	Moved prewritten methods into a class to avoid defining reserved methods at the module level.

	When assigning equality methods is disabled for a decorated class, the default behavior is now object semantics, rather than failing comparison and hashing with a TypeError.

	The prewritten comparison methods no longer return NotImplemented.

Removed

	Ctor metaclass.

0.2.1 (2018-07-13)

Fixed

	Removed an incorrect classifier. This code cannot run on pypy.

0.2.0 (2018-07-13)

Added

	Explicit __bool__ implementation, to consider all constructor instances as truthy, unless defined otherwise.

	Python 3.7 support.

Changed

	Marked the enum constructor base class as private. (EnumConstructor -> _EnumConstructor)

	Switched scope of test coverage to supported versions. (Python 3.7)

Removed

	Support for Python 3.6 and earlier.

	Incidental functionality required by supported Python 3.6 versions. (Hooks to enable restricted subclassing.)

0.1.0 (2018-06-10)

	First release on PyPI.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 structured_data	

 	
 	
 structured_data.adt	

 	
 	
 structured_data.data	

 	
 	
 structured_data.match	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | M
 | N
 | P
 | S

A

 	
 	AttrPattern (class in structured_data.match)

B

 	
 	Bind (class in structured_data.match)

 	
 	bindings (structured_data.match.Bind attribute)

C

 	
 	Ctor (class in structured_data.adt)

D

 	
 	decorate_in_order() (in module structured_data.match)

 	delete_when() (structured_data.match.Property method)

 	deleter() (structured_data.match.Property method)

 	
 	destructure() (structured_data.match.AttrPattern method)

 	(structured_data.match.Bind method)

 	(structured_data.match.DictPattern method)

 	DictPattern (class in structured_data.match)

E

 	
 	Either (class in structured_data.data)

 	Either.Left (class in structured_data.data)

 	
 	Either.Right (class in structured_data.data)

 	exhaustive (structured_data.match.DictPattern attribute)

 	exhaustive_length_must_match() (structured_data.match.DictPattern method)

F

 	
 	function() (in module structured_data.match)

G

 	
 	get_when() (structured_data.match.Property method)

 	
 	getter() (structured_data.match.Property method)

M

 	
 	match() (structured_data.match.Matchable method)

 	match_dict (structured_data.match.AttrPattern attribute)

 	(structured_data.match.DictPattern attribute)

 	Matchable (class in structured_data.match)

 	
 	MatchDict (class in structured_data.match)

 	Maybe (class in structured_data.data)

 	Maybe.Just (class in structured_data.data)

 	Maybe.Nothing (class in structured_data.data)

N

 	
 	name (structured_data.match.Pattern attribute)

 	
 	names() (in module structured_data.match)

P

 	
 	Pattern (class in structured_data.match)

 	
 	Product (class in structured_data.adt)

 	Property (class in structured_data.match)

S

 	
 	set_when() (structured_data.match.Property method)

 	setter() (structured_data.match.Property method)

 	structure (structured_data.match.Bind attribute)

 	
 	structured_data.adt (module)

 	structured_data.data (module)

 	structured_data.match (module)

 	Sum (class in structured_data.adt)

 _static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_images/quality-score.png
 Scrutinizer Scrutinizer 10.00 10.00

_static/up.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 How Can I Help?

 		
 Should I Use This?

 		
 Installation

 		
 Documentation

 		
 Development

 		
 Installation

 		
 Usage

 		
 Reference

 		
 structured_data.adt

 		
 structured_data.data

 		
 structured_data.match

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 Unreleased

 		
 0.13.0 (2019-09-29)

 		
 Added

 		
 Fixed

 		
 0.12.1 (2019-09-04)

 		
 Added

 		
 0.12.0 (2019-09-03)

 		
 Added

 		
 Changed

 		
 Removed

 		
 0.11.1 (2019-03-23)

 		
 Changed

 		
 0.11.0 (2019-03-23)

 		
 Changed

 		
 0.10.1 (2019-03-22)

 		
 Added

 		
 0.10.0 (2019-03-21)

 		
 Changed

 		
 0.9.0 (2019-03-20)

 		
 Changed

 		
 0.8.0 (2019-03-19)

 		
 Changed

 		
 0.7.0 (2019-03-19)

 		
 Changed

 		
 0.6.1 (2019-03-18)

 		
 Added

 		
 Changed

 		
 0.6.0 (2018-07-27)

 		
 Added

 		
 Changed

 		
 0.5.0 (2018-07-22)

 		
 Added

 		
 Changed

 		
 0.4.0 (2018-07-21)

 		
 Added

 		
 Fixed

 		
 Removed

 		
 0.3.0 (2018-07-15)

 		
 Added

 		
 Changed

 		
 Removed

 		
 0.2.1 (2018-07-13)

 		
 Fixed

 		
 0.2.0 (2018-07-13)

 		
 Added

 		
 Changed

 		
 Removed

 		
 0.1.0 (2018-06-10)

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

